Stability N

Dr. Keith A. Heasley

Associate Professor Department of Mining Engineering West Virginia University

Stability Mappin (Hazard Mapping)

Has been practiced for many years:

Initial stability maps hand-drawn and highlighted one feature

> With computers, more comprehensive information is available and more complex (accurate?) analysis is easier to perform.

Geologic Databases, LaModel, CMRR

Stress Hazard

Integrated Stability Mapping System

AutoCAD as the basic drawing and mapping foundation.

SurvCADD as the geologic characterization and database model.

LaModel for the overburden and multi-seam stresses, subsidence-based strains and pillar safety factors.

CMRR for the structural analysis of geology

Stability Mapping Application

4

Reload Stability Modules by Mining Engineering, WVU

Command

Stability Mapping Application

Reload Stability Modules

Define Base Grid

Factor from <u>C</u>ontour Lines Factor from Point Features

Factor from Linear Features

Factor from <u>A</u>rea Boundaries

Topography Stress Calculation Horizontal Stress Gridding

RFRI Utilities and Calculations

Topography Grid Generation for LaModel Seam Grid Generation for LaModel LaModel Calculation

Transfer LaModel/MulSim Results

Transformation of Individual <u>F</u>actors Final Stability <u>I</u>ndex

Index Mapping

Grid <u>U</u>tilities

Polyline Utilities

Unload Stability Modules

About

Stability Mapping at Bowie

Bowie Resources, LLC:

Paonia, Colorado, Somerset Coal Field, Piceance Basin, 4 Million tons per year

Bowie No. 2 – D Seam, 9.5 ft extraction

Bowie No. 3 – B Seam, 250 ft interburden

Southwest Mining District

B(1

400

400

200

600

1000

800

1200 B1 Longwall Panel

1400 B2 Longwall Panel

¹⁰⁰⁰B3 Longwall Panel

600

401

Lander de la constant La constant de la cons

Critical Parameters at Bowie

Overburden and Multiple-Seam Stress

- Interburden to Rider Seam
- Sandstone Channels
- Faults, Slumps and Warps
- Coal Mine Roof rating

Southwest Mining District

B(1

400

400

200

600

1000

800

1200 B1 Longwall Panel

1400 B2 Longwall Panel

¹⁰⁰⁰B3 Longwall Panel

600

401

Lander de la constant La constant de la cons

Insitu Stress Scale (psi)

Critical Parameters at Bowie

Overburden and Multiple-Seam Stress

- Interburden to Rider Seam
- Sandstone Channels
- Faults, Slumps and Warps
- Coal Mine Roof Rating

Rider Interburgen

ی کی اود احد ' کو حداد

Critical Parameters at Bowie

Overburden and Multiple-Seam Stress

- Interburden to Rider Seam
- Sandstone Channels
- Faults, Slumps and Warps
- Coal Mine Roof Rating

Faults, Slumps, Wa Index

100.00
90.91
81.82
72.73
63.64
54.55
45. 45
36.36
27.27
18.18
9.09
0.00

Critical Parameters at Bowie

Overburden and Multiple-Seam Stress

- Interburden to Rider Seam
- Sandstone Channels
- Faults, Slumps and Warps
- Coal Mine Roof Rating

Parameters Weightings

Critical Parameter	Final Weighting
Overburden Stress	20
Multiple-Seam Stress	15
CMRR	20
Sandstone Channels	10
Interburden Thickness	20
Faults	20
Slumps	10
Warps	5

Final Stability

Results

Weighting Factors were optimized with results from mining in the first panel

In subsequent mining, the stability mapping successfully predicted problematic zones

With foreknowledge of the problem zones, the management was able to be pro-active in their ground support plan

Roof Suppor

Roof Support was applied based on the stability rating:

Minimum 7 ft torque-tension bolt

Supplemented with 12 ft cable bolts, 4 per row, heavy mats, 5 ft max row spacing

>24 in Burrell cans, 2 per row, 8 ft max spacing

Part of a Bigger

Comprehensive geologic data collection:
Roof bolters log lithology
Underground core drilling
Underground mapping
Geologic model continuously updated

Weekly "Quality" meetings to communicate ground conditions

Conclusion

➤ The operational plans developed from projecting problem zones through stability mapping have allowed Bowie Resources to successfully mine through difficult conditions, safely and successfully

Bowie Resources continues to use the stability mapping system on their present and future panels

Questions

Final Stability Index

